Pollution and the Cardiovascular System

*The signature physiologic consequence of air pollution is the same as cigarette smoke: a low grade arterial inflammation, arteriolar narrowing, and vascular prothrombotic changes. As with cigarette smoke the effect can be almost immediate and chronic exposure to even low concentrations of pollution are associated with an acceleration of atherosclerosis and significant arteriolar narrowing and stiffness. Breathing more ozone in childhood increases arterial wall thickness in young adults.

*Simultaneously high concentrations of multiple pollutants have a synergistic effect on hospitalizations for cardiac disease.
*Air pollution causes average blood pressure to increase within minutes. All organs are affected. Blood pressure rises are found in even in children.

*Air pollution can alter electrical signaling within the heart. Rates of arrhythmias, heart attacks and strokes increase with air pollution and are the primary cause for increased community mortality rates. Those rates increase within hours after exposure and stay elevated for as long as 30 days after the exposure has ended.

*In patients who suffer from heart failure, air pollution reduces cardiac function

*Particulate pollution concentrations typical of the Wasatch Front increase mortality rates about 10% according to the formula recommended by the American Heart Association published in May, 2010. A subsequent study suggests that number should be 14%. That means between 1,000 and 2,000 Utahns die prematurely every year due to our air pollution. Approximately 210,000 premature deaths occur annually in the US from combustion emissions. The average pollution related premature death represents about ten years of lost life.

*Particulate pollution from coal and diesel combustion are likely much more potent in triggering heart and vascular disease than most other sources.

*Mortality plotted against air pollution concentrations shows no safe threshold, even at low levels, well below EPA national ambient air quality standards (NAAQS). Furthermore this curve is not linear. The steepest part of the curve is at low doses, i.e. small air pollution reductions have even greater public health benefit when the concentrations are already
Even at what are considered ‘background’ levels of particulate pollution there are increased risks for cardiopulmonary mortality compared to clean, filtered air.

*Air pollution impairs exercise capability, even in the very fittest of individuals. Even in young, healthy adults air pollution increases biomarkers of inflammation and thrombosis and increases blood pressure and heart rate.

*Air pollution shortens life expectancy and accelerates the aging process. The residents of the average American city lose 1-3 years of life expectancy, in Northern China residents lose 5.5 years.

*The increase in mortality risk persists for decades after exposure.

*There are very likely genetic differences in human susceptibility to the arterial inflammation provoked by air pollution.


4. Dockery DW, Stone PH. Cardiovascular Risks from Fine Particulate Air Pollution. NEJM 2007; 356:511-513


21. Katariina Kallio, MD, PhD; Eero Jokinen, MD, PhD; Maiju Saarinen, MSSc; Mauri Hämäläinen, PhD; Iina Volanen, MD, PhD; Tuuli Kaitosaari, MD, PhD; Tapani Rönnemaa, MD, PhD; Jorma Viikari, MD, PhD; Olli T. Raitakari, MD, PhD and Olli Simell, MD, PhD Arterial Intima-Media Thickness, Endothelial Function, and Apolipoproteins in Adolescents Frequently Exposed to Tobacco Smoke. Circulation: Cardiovascular Quality and Outcomes. 2010. Published online before print March 2, 2010, doi: 10.1161/CIRCOUTCOMES.109.857771


50. Szyszkowicz M, Rowe BH, Brook RD. Even Low Levels of Ambient Air Pollutants Are Associated With Increased Emergency Department Visits for Hypertension. Can J Cardiol. 2011 Sep 23. [Epub ahead of print]


Term Exposure to Outdoor Air Pollution From Nitrogen Dioxide. Published online before print November 3, 2011, doi: 10.1161/STROKEAHA.111.629246


96. Crabbe H. Risk of respiratory and cardiovascular hospitalisation with exposure to bushfire particulates: new


102. Atkinson R, Carey I, Kent A, van Staa T, Anderson HR, Cook D Long-Term Exposure to Outdoor Air Pollution and Incidence of Cardiovascular Diseases. Epidemiology, 5 December 2012. doi: 10.1097/EDE 0b013e318276ccb8


122. Son JY, Lee JT, Park YH, Bell ML. Short-Term Effects of Air Pollution on Hospital Admissions in Korea. Epidemiology. 2013 May 14. [Epub ahead of print]


145. Zanobetti A, et al. Brachial Artery Responses to Ambient Pollution, Temperature, and Humidity in People with Type 2 Diabetes: A Repeated-Measures Study. Environ Health Perspect; DOI:10.1289/ehp.1206136


149. Gall S, et al. Exposure to parental smoking in childhood or adolescence is associated with increased carotid intima-media thickness in young adults: evidence from the Cardiovascular Risk in Young Finns study and the Childhood Determinants of Adult Health Study Eur Heart J first published online March 4, 2014 doi: 10.1093/eurheartj/ehu049


188. Weichenthal S, Hatzopoulou M, Goldberg MS. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part Fibre Toxicol. 2014 Dec 9;11(1):70. [Epub ahead of print]

190. Chung Y, Dominici F, Wang Y, Coull BA, Bell ML. Associations between Long-Term Exposure to Chemical Constituents of Fine Particulate Matter (PM2.5) and Mortality in Medicare Enrollees in the Eastern United States. Environ Health Perspect. 2015 Jan 6. [Epub ahead of print]


195. Pope CA 3rd, Turner MC, Burnett RT, Jerrett M, Gapstur SM, Diver WR, Krewski D, Brook RD. Relationships between fine


199. Chan S, et al. Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study. Environ Health Perspect; DOI: 10.1289/ehp.1408125

200. Pieters N, et al. Blood Pressure and Same-Day Exposure to Air Pollution at School: Associations with Nano-Sized to Coarse PM in Children. Environ Health Perspect; DOI:10.1289/ehp.1408121

a Panel of Young Adults. Epidemiology. 2015 Feb 25. [Epub ahead of print]


203. Ostro B, et al. Associations of Mortality with Long-Term Exposures to Fine and Ultrafine Particles, Species and Sources: Results from the California Teachers Study Cohort. Environmental Health Perspectives, http://dx.doi.org/10.1289/ehp.1408565. Advance Publication: 23 January 201


205. van Rossem L, et al. Prenatal Air Pollution Exposure and Newborn Blood Pressure. Environ Health Perspect; DOI:10.1289/ehp.1307419


207. Wong CM, Lai HK, Tsang H, Thach TQ, Thomas GN, Lam KB, Chan KP, Yang L, Lau AK, Ayres JG, Lee SY, Chan WM, Hedley AJ, Lam TH. Satellite-Based Estimates of Long-Term Exposure to Fine Particles and Association with Mortality in
Elderly Hong Kong Residents. Environ Health Perspect. 2015 Apr 24. [Epub ahead of print]


213. ResBart Ostro R. et al. Associations of Mortality with Long-Term Exposures to Fine and Ultrafine Particles, Species and Sources: Environ Health Perspect; DOI: 10.1289/ehp.1408565


218. Fischer P, et al. Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS) Environ Health Perspect; DOI: 10.1289/ehp.1408254


224. Crouse D, et al. Ambient PM2.5, O3, and NO2 Exposures and Associations with Mortality over 16 Years of Follow-Up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ Health Perspect; DOI:10.1289/ehp.1409276


229. Broome RA, et al. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of


236. Mentz RJ, O'Brien EC. Air Pollution in Patients With Heart Failure: Lessons From a Mechanistic Pilot Study of a Filter


Pollution and the Brain

* The systemic inflammation caused by air pollution also affects the brain

* Air pollution components reach the brain and can penetrate deeply into the parenchyma.

* Many of the compounds adsorbed to particulate matter are neurotoxic.

* Air pollution causes CNS oxidative stress, neuroinflammation, neuronal damage, neuronal loss, loss of brain mass, cortical stress measured by EEG, enhancement of Alzheimer type-abnormal filamentous proteins, BBB changes, and cerebrovascular damage. Many of these changes can be found in children and young adults.

* Greater air pollution exposure is associated with lower intelligence, poorer motor function, attention deficits and behavioral problems in children, decreased cognition and accelerated dementia in adults, higher rates of strokes,
multiple sclerosis, autism, impaired olfactory sense, Parkinson's, and other neurodegenerative diseases, depression, anxiety, and suicide

* Prenatal exposure to air pollution is particularly harmful to fetal brain development, even causing loss of white matter involving the left hemisphere which results in impaired cognition and behavioral disorders in childhood.


Age 5 in a Prospective Cohort Study in Poland. Environ Health Perspect :-\[10.1289/ehp.0901070


17. Lopez I, Beltran-Parrazal L, Abhimanyu Amarnani A. Evidence for oxidative stress in the developing cerebellum of the rat after chronic mild carbon monoxide exposure (0.0025% in air) BMC Neuroscience 2009, 10:53doi: 10.1186/1471-2202-10-53


22. Kettunen, J. et al. (2007) Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke 38, 918–922


26. Lopez IA, Acuna D, Beltran-Parrazal L, Lopez IE, Amarnani A, Cortes M, Edmond J. Evidence for oxidative stress in the developing cerebellum of the rat after chronic mild carbon monoxide exposure (0.0025% in air) BMC Neuroscience 2009, 10:53 (27 May 2009)


http://www.sciencenews.org/view/feature/id/58906/title/Destination_brain


66. Calderon-Garciduenas L, Cross JV, Franco-Lira M. “Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrPC), interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution,” Frontiers in Neuroscience, vol. 7, article 183, 2013


68. Boucher O, et al. Domain-Specific Effects of Prenatal Exposure to PCBs, Mercury, and Lead on Infant Cognition: Results from the Environmental Contaminants and Child Development Study in Nunavik. Environ Health Perspect; DOI: 10.1289/ehp.1206323


88. Differential effects between one week and four weeks exposure to same mass of SO2 on synaptic plasticity in rat hippocampus. Environ Toxicol. 2014 Dec 23. doi: 10.1002/tox.22093. [Epub ahead of print]


90. Guarneros M, Hudson R, López-Palacios M, Drucker-Colín R. Reference Values of Olfactory Function for Mexico City


95. Jacobson J, et al. Relation of Prenatal Methylmercury Exposure from Environmental Sources to Childhood IQ. Environ Health Perspect; DOI:10.1289/ehp. 1408554


99. Seamen N, et al. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study Environ Health Perspect; DOI:10.1289/ehp.1408549


111. Jacobson JL, et al. Relation of Prenatal Methylmercury Exposure from Environmental Sources to Childhood IQ. Environ Health Perspect; DOI:10.1289/ehp.1408554

112. Saenen N, et al. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study Environ Health Perspect; DOI:10.1289/ehp.1408549


128. Marquesa R, et al. Neurodevelopment of Amazonian children exposed to methylmercury (from Thimerosal in vaccines) and methylmercury (from fish). Environmental Research Available online 7 January 2016

129. Chen JC, et al. Ambient Air Pollution and Neurotoxicity on Brain Structure: Evidence From Women’s Health Initiative Memory Study. ANN NEUROL 2015;78:466–476


####################################################
##################
Pollution and Chromosomal/Fetal Development

* Babies are essentially born pre-polluted by the air breathed by the mother during pregnancy. Particulate matter and the chemicals attached to them can cross the placenta and interfere with fetal development.

* Pregnant women exposed to more air pollution give birth to babies with significantly more chromosomal aberrations including shorter telomeres and epigenetic changes which can be passed on to multiple subsequent generations.

* Exposure even to brief episodes of pollution at critical stages in the development of the human embryo can cause a person to experience an increased likelihood of multiple chronic diseases including those of the heart, lungs, immune system and brain and even obesity, diabetes, cancer and shortened life expectancy.

* Air pollution breathed by a pregnant mother causes epigenetic changes in the womb, which is associated with higher rates of asthma and decreased lung function in those children 5 years later.

* Exposure to intermittent air pollution is associated with sperm DNA damage and consequent increase in the rates of male infertility, miscarriages and other adverse reproductive outcomes.

* Children living near petrochemical industries are exposed to high PAH levels, contributing to DNA damage. Industrial pollution is even more genotoxic than traffic pollution.
*Regarding birth weights and poor neurologic outcomes, males are generally more affected by prenatal air pollution than females.

1. Bruner-Tran, KL and KG Osteen. 2010. Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reproductive Toxicology http://dx.doi.org/10.1016/j.reprotox.2010.10.003


6. Perera F, Tang D, Tu Y, Biomarkers in Maternal and Newborn Blood Indicate Heightened Fetal Susceptibility to Procarcinogenic
DNA Damage. Environ Health Persp Vol 112 Number 10 July 2004


(Industrial PM2.5 is more genotoxic and causative of oxidative stress than traffic PM2.5)


on DNA, mitochondria, AhR binding and spindle organization. Mutat Res. 2011 May 30. [Epub ahead of print]


42. Tillett T Potential Mechanism for PM10 Effects on Birth Outcomes: In Utero Exposure Linked to Mitochondrial DNA Damage. Environ Health Perspect 120:a363- a363. http://dx.doi.org/10.1289/ehp.120-a363b


policemen exposed to vehicle exhaust. Biomarkers. 2013 Jun 5. [Epub ahead of print]


62. XU DQ, ZHANG W. Monitoring of Pollution of Air Fine Particles (PM2.5) and Study on Their Genetic Toxicity BIOMEDICAL AND ENVIRONMENTAL SCIENCES 17, 452-458(2004)


70. Neophytou AM, Hart JE, Chang Y, Zhang JJ, Smith TJ, Garshick E, Laden F. Short- term traffic related exposures and


79. Seamen N, et al. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study. Environ Health Perspect; DOI:10.1289/ehp.1408549


Pollution and the Lung

* Air pollution permanently inhibits lung growth in children. In fact prenatal exposure can reduce fetal lung development, impairing lung function in childhood.

* Brief exposure to ozone and particulate matter reduce lung function even in young healthy adults and the reduction can last for a week after the pollution exposure is over.

* Air pollution causes lung cancer.
* Long term ozone exposure causes an increase in overall mortality in addition to that from particulate matter. Most of the mortality is respiratory.

* Air pollution exacerbates virtually all pulmonary diseases and likely plays a causative role in reactive airways disease.

* Air pollution is associated with increased rates of hospitalization and death from respiratory diseases from neonates to the elderly

* The correlation between the above health outcomes and ozone are still found at concentrations between one half and one third the current EPA NAAQS

* Early life exposure to pesticides is associated with decreased lung function


10. Chong S Kim1*, Neil E Alexis2, Ana G Rappold1, Howard Kehrl1, Milan J Hazucha2, John C Lay2, Mike T Schmitt1, Martin Case1, Robert B Devlin1, David B Peden2, and David Diaz-Sanchez1 Lung Function and Inflammatory Responses in Healthy
Young Adults Exposed to 0.06 ppm Ozone for 6.6 Hours. Published ahead of print on January 7, 2011. Am. J. Respir. Crit. Care Med. 2011, doi:10.1164/rccm.201011-1813OC


and mortality after lung transplantation. Thorax. 2011 Mar 23. [Epub ahead of print]


54. Gan WQ, Fitzgerald JM, Carlsten C, Sadatsafavi M, Brauer M. Associations of Ambient Air Pollution with Chronic Obstructive Pulmonary Disease Hospitalization and Mortality. Am J Respir Crit Care Med. 2013 Feb 7. [Epub ahead of print]


68. Tanaka T, Asai M, Yanagita Y, Nishinakagawa T, Miyamoto N, Kotaki K, Yano Y, Kozu R, Honda S, Senjyu H. Longitudinal study


effect of ambient PM2.5 exposure and rhinovirus infection in airway dysfunction in asthma: A pilot observational study from the central valley of california.


105. Pope D, et al. Exposure to Household Air Pollution from Wood Combustion and Association with Respiratory Symptoms and Lung Function in Nonsmoking Women: Results from the RESPIRE Trial, Guatemala


110. Künzi L, et al., Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Scientific Reports, 2015; 5: 11801 DOI: 10.1038/srep11801


Pollution and Birth Outcomes
* Air pollution causes morphologic changes in the placenta, and disrupts the vasculature in the umbilical cord, inhibiting blood transfer to the fetus

* Pregnant women exposed to more air pollution have multiple adverse pregnancy outcomes including higher blood pressure, higher rates of pre-eclampsia, intrauterine growth retardation, premature births, premature rupture of membranes, low birth wt. syndrome, still births, gestational diabetes, and neonates with smaller head circumference.

* Air pollution is associated with higher rates of birth defects including neural tube and cardiac birth defects.


16. Lee PC, Talbott EO, Roberts JM, Catov JM, Sharma RK, Ritz B. Particulate Air Pollution Exposure and C-reactive Protein During Early Pregnancy. Epidemiology. 2011 Apr 21. [Epub ahead of print]


18. Salihu HM, August EM, Mbah AK, Alio AP, de Cuba R 2nd, Jaward FM, Berry EL. Effectiveness of a Federal Healthy Start Program in Reducing the Impact of Particulate Air Pollutants on


Pesatori AC, Sathyanarayana S, Seo J, Strickland M, Tamburic L, Woodruff TJ.


72. Stingone J. Maternal Exposure to Criteria Air Pollutants and Congenital Heart Defects in Offspring: Results from the National Birth Defects Prevention Study. Environ Health Perspect; DOI: 10.1289/ehp.1307289


76. Hyder A, Lee HJ, Ebisu K, Koutrakis P, Belanger K, Bell ML. PM2.5 exposure and birth outcomes: use of satellite- and monitor-
77. Stingone J. et al. Maternal Exposure to Criteria Air Pollutants and Congenital Heart Defects in Offspring: Results from the National Birth Defects Prevention Study. Environ Health Perspect; DOI:10.1289/ehp.1307289


82. Kahn L. et al. Blood Lead Concentration and Thyroid Function during Pregnancy: Results from the Yugoslavia Prospective Study of Environmental Lead Exposure. Environ Health Perspect; DOI: 10.1289/ehp.1307669


99. Rich D, et al. Differences in Birth Weight Associated with the 2008 Beijing Olympic Air Pollution Reduction: Results from a Natural Experiment. Environ Health Perspect; DOI:10.1289/ehp.1408795


102. Hao Y, et al. Geographic Variation in the Association between Ambient Fine Particulate Matter (PM2.5) and Term Low Birth Weight in the United States. Environ Health Perspect; DOI: 10.1289/ehp.1408798

Ballester F. Prenatal Exposure to NO2 and Ultrasound Measures of Fetal Growth in the Spanish INMA Cohort. Environ Health Perspect. 2015 Jun 26. [Epub ahead of print]


115. Stieb D, et al. Associations of Pregnancy Outcomes and PM2.5 in a National Canadian Study. Environ Health Perspect; DOI:10.1289/ehp.1408995

116. Yongping H, et al. Geographic Variation in the Association between Ambient Fine Particulate Matter (PM2.5) and Term Low Birth Weight in the United States. Environ Health Perspect; DOI: 10.1289/ehp.1408798

118. Rich D, et al. Differences in Birth Weight Associated with the 2008 Beijing Olympic Air Pollution Reduction: Results from a Natural Experiment. Environ Health Perspect; DOI:10.1289/ehp.1408795

Air Pollution and Cancer

*Air pollution is associated with higher rates of breast, lung, prostate, cervical, brain, nasal, pharyngeal, liver and stomach cancer, and childhood leukemia. Pre-natal pollution exposure is associated with increased rates of multiple childhood cancers. Air pollution is associated with decreased survival in breast cancer patients. The World Health Organization has declared air pollution the most important environmental cause of cancer, more important that second hand cigarette smoke. The WHO placed it in the same category as asbestos and ionizing radiation


The ESCALE Study (SFCE). Environ Health Perspect 119:566-572. doi:10.1289/ehp.1002429


44. von Ehrenstein O, et al. In Utero and Early-Life Exposure to Ambient Air Toxics and Childhood Brain Tumors: A Population-Based Case-Control Study in California, USA. Environ Health Perspect; DOI:10.1289/ehp.1408582


prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet. Published online July 10 2013

Air Pollution and Metabolic Disorders

* More exposure to air pollution decreases insulin sensitivity, glucose tolerance, increases rates of Type I and Type II diabetes, and promotes obesity and metabolic syndrome.

* Prenatal exposure has a particularly strong association with childhood obesity.

* Good cholesterol (HDL) is decreased, and bad cholesterol (LDL) is increased with more air pollution.


Type 2 Diabetes? Environ Health Perspect 119:384-389. doi: 10.1289/ehp.1002344


32. Malmqvist E. Maternal exposure to air pollution and type 1 diabetes - Accounting for genetic factors. Environ Res. 2015 Apr 13;140:268-274. doi: 10.1016/j.envres.2015.03.024. [Epub ahead of print]


Miscellaneous Health Consequences

* Immune suppression, inflammatory bowel disease, bacterial and viral infections, lupus, juvenile arthritis, infant mortality, sleep apnea, obesity and suicide are elevated in populations exposed to more air pollution.

* Air pollution can induce liver toxicity, accelerate liver inflammation and steatosis.

* Air pollution causes systemic oxidative stress, triggers the inflammatory chemical cascade, endothelial cell death, cytotoxicity, macrophage infiltration, and increases lipid deposition. Particulate matter penetrates intracellular structures.

* Air pollution accelerates the aging process and shortens the lengths of telomeres even in newborns.

* Air pollution increases infant mortality and SIDS

* Wood smoke is uniquely toxic, the most toxic type of air pollution that most people are ever exposed to.

* Even short term air pollution decreases fertility


doi:10.1289/ehp.1002913


27. Lim YH, Kim H, Kim JH, Bae S, Park HY, Hong YC. Air Pollution and Depressive Symptoms in Elderly Adults. Environ Health Perspect. 2012 Apr 18. [Epub ahead of print]


33. Tong, H, AG Rappold, D Diaz-Sanchez, SE Steck, J Berntsen, WE Cascio, et al. 2012. Omega-3 fatty acid supplementation appears to attenuate particulate air pollution induced cardiac effects and lipid changes in healthy middle-aged adults. Environmental Health Perspective http://dx.doi.org/10.1289/ehp.1104472.


47. Lue S, Wellenius G, Wilker E, Mostofsky E, Mittleman M. Residential proximity to major roadways and renal function. J Epidemiol Community Health Published Online First: 13 May 2013 doi:10.1136/jech-2012-202307


57. Eum K, Weisskopf M, Nie L, Hu H, Korrick S. Cumulative Lead Exposure and Age at Menopause in the Nurses’ Health Study Cohort. Environ Health Perspect; DOI: 10.1289/ehp.1206399


75. Bakian AV, Huber RS, Coon H, Gray D, Wilson P, McMahon WM, Renshaw PF. Acute Air Pollution Exposure and Risk of


84. Lanki T, et al. Air Pollution from Road Traffic and Systemic Inflammation in Adults: A Cross-Sectional Analysis in the European ESCAPE Project. Environ Health Perspect; DOI: 10.1289/ehp.1408224


